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Abstract. An optimization problem is often represented with a set of
variables, and the interaction between the variables is referred to as epis-
tasis. In this paper, we propose two new measures of epistasis: internal
epistasis and external epistasis. Then we show that they can quantify the
decomposability of a problem, which has a theoretical meaning about
how strongly the problem is independently optimizable with a partition
of variables. We present examples of the problem decomposition and the
results of experiments that support the consistency of the measures.

1 Introduction

An optimization problem is specified by a set of problem instances, each of which
is a pair (U , f), where the universe U is the set of feasible solutions and the fitness
function f is a mapping f : U → R [1]. A solution set is often represented by a set
of variables, whose values can have certain ranges. If the ranges are discrete, the
problem is said to be combinatorial [2]. The interaction between the variables is
referred to as epistasis, which implies that the contribution of a variable to the
fitness depends on the values of other variables. The epistasis is one of the main
reasons that one cannot solve problems by naive approaches, such as steepest
ascent method, which try to optimize each variable independently.

This difficulty was addressed recently with the techniques relevant to the
“building blocks” or the “factorization” in the evolutionary algorithms. A build-
ing block is a specific assignment to a subset of variables that contributes to
a high fitness, which is believed to give a shortcut to the optimal solution.
Such building blocks are detected and proliferated in the population by the
genetic operators in topological linkage-based genetic algorithms (TLBGAs) [3].
Thus the precise and efficient detection of the building blocks is critical in the
black box optimization where no problem-specific knowledge is available. Instead
of manipulating the building blocks by the genetic operators, the distribution
of the variables is explicitly estimated in estimation-of-distribution algorithms
(EDAs) [4,5]. EDAs do not use crossover nor mutation operator. Instead, the
new population of individuals is sampled from a probability distribution, which
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is estimated from selected individuals from the previous generation. Since the
exact estimation of the whole distribution of the variables is computationally
prohibitive for large-scale problems, the variable set is factorized into a num-
ber of subsets in which variables are believed to have strong dependence with
each other. The factorization is often based on probabilistic graphic model [6,
7] in recent EDAs. The building block detection and the factorization of the
distribution are strongly correlated with the decomposition of a problem since
both of them are, in some sense, to find the subgroups of the variables that are
likely to be optimized individually. The approaches are, however, not free from
specific algorithms and their running status since the building block detection
and the model construction are based on the solutions selected by fitness from
the population or the probability distribution at that point of time.

There are a number of algorithm-independent measures of epistasis including
the epistasis variance by Davidor [8] and the entropic epistasis by Seo et al. [9,10].
The epistasis variance quantifies the nonlinearity lying in the fitness landscape
based on experimental design [11], while the entropic epistasis measures, using
Shannon’s information theory [12,13], the amount of information shared by the
variables about the fitness. In this paper, we extend the entropic epistasis to the
problem decomposition. To do so, we first show that the epistasis can be split
into two factors: internal epistasis and external epistasis. Then we formally define
the theoretical concept of problem decomposition in the sense of independent
optimization. Finally, we show the relationship between the two novel measures
and the decomposability of a problem.

The reset of this paper is organized as follows. We provide a brief overview
of the entropic epistasis and propose new epistasis measures in Section 2. Then
we formally define the decomposition of a problem and show the relationship
between the decomposability and the epistasis of the problem in Section 3. The
examples of problem decomposition and the experimental results are presented
in Section 4. The conclusions are given finally in Section 5.

2 Epistasis Measures

2.1 Probability Model

Let the variable indices of a given problem be V = {1, 2, . . . , n}, and the alphabet
for each variable be Ai, i ∈ V. And let the universe and the fitness function be
U ⊆ A1 × A2 × · · · × An and f : U → F , respectively. We assume that the
alphabet of each variable is finite. Then, the set of all fitness values F ⊂ R is
finite as the universe is finite.

Based on the uniform probability model on the universe, we define a random
variable Xi for each variable i ∈ V and a random variable Y for the fitness value.
Then, the joint probabilistic mass function (jpmf) p : A1 × · · · × An × F → R of
the random variables are defined as follows:

p(x1, x2, . . . , xn, y) =






1
|U| if (x1, x2, . . . , xn) ∈ U

and y = f(x1, x2, . . . , xn)
0 otherwise.

(1)
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It means that the probability of a solution (x1, x2, . . . , xn) and a fitness value y
is 1

|U| if the fitness value of the solution f(x1, x2, . . . , xn) is y, and the probability
is zero otherwise. In this paper, we use a conventional notation XV to denote
(Xv1 , Xv2 , . . . , Xvk

) for a variable set V = {v1, v2, . . . , vk} ⊆ V.
It is practical to use a set of sampled solutions instead of the universe U in

Equation (1) for large-scale problems because of the spatial or computational
limitations. In the case, the size of the set must be not too small to get results
of low levels of distortion (see [10] for details).

In general, the fitness function of a problem is defined on a continuous do-
main, while each variable has a discrete alphabet in combinatorial optimization
problems. Although the set F of all fitness values of a problem instance is finite,
it is less practical to consider each distinct value in F as a discrete symbol for
the random variable Y since we can hardly talk about the statistics including
fitness as one of the variables if the solutions rarely share the same fitness. Hence
the fitness needs to be discretized into a number of intervals (see [10] for details).

2.2 Significance and Epistasis

The significance of a variable set is defined to be the mutual information between
the corresponding random variables and the random variable Y . It is intuitive
and natural because if we can get more information about the fitness from the
values of the variables then we can say that the variables contribute more to the
fitness. Formally, the significance ξ(V ) of a variable set V = {v1, v2, . . . , vk} ⊆ V,
k ≥ 1, is defined as follows [9,10]:

ξ(V ) =
I(XV ; Y )

H(Y )
(2)

where I denotes the mutual information [13]. We do not consider the case when
the fitness is constant, i.e., the case of |F| = 1, because no optimization is
required in the case. Hence we regard the entropy of Y as a nonzero value. The
equation in the definition is a normalized formula, as is easily verified in the
following. The significance ξ(V ) of a variable set V ⊆ V satisfies the following
inequality:

0 ≤ ξ(V ) ≤ 1. (3)

If the significance is zero, then we cannot get any information about the fitness
from the corresponding variables. On the contrary, if the significance is one,
then we can fully identify the fitness from the variables. It is clear that ξ(V) = 1
since I(XV ; Y ) = H(Y ), and ξ(V ) ≤ ξ(W ) for V ⊆ W ⊆ V since I(XV ; Y ) ≤
I(XW ; Y ) by the chain rule (see [13] p. 22).

The epistasis can be defined rigorously from the significance. From (2), the
significance of a variable set V ⊆ V is denoted by ξ(V ) and the significance
of each variable v in V is denoted by ξ(v). We define the epistasis between the
variables in V to be the difference between ξ(V ) and the summation of all ξ(v)’s,
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v ∈ V . Formally, the epistasis ε(V ) of a variable set V = {v1, v2, . . . , vk} ⊆ V,
k ≥ 1, is defined as follows [9,10]:

ε(V ) =






ξ(V ) −
k∑

i=1

ξ(vi)

ξ(V )
if I(XV ; Y ) �= 0

0 otherwise,

(4)

which is rewritten as

ε(V ) =

I(XV ; Y ) −
k∑

i=1

I(Xvi
; Y )

I(XV ; Y )
(5)

when I(XV ; Y ) �= 0. The epistasis ε(V ) of a variable set V ⊆ V satisfies the
following inequality:

1 − |V | ≤ ε(V ) ≤ 1. (6)

The epistasis has a positive value when ξ(V ) is greater than
∑k

i=1 ξ(vi) and
it has a negative value when ξ(V ) is smaller than

∑k
i=1 ξ(vi). The former case

means that the corresponding variables interact constructively with each other,
and the latter case means that they interact destructively with each other.

The epistasis has a nonnegative value if the universe contains the whole
combinations of the alphabets. Formally, if the universe U of a problem is defined
to be A1 × A2 × · · · × An, then the epistasis ε(V ) of a variable set V ⊆ V is
nonnegative, i.e.,

0 ≤ ε(V ) ≤ 1. (7)

The equation means that a set of variables always interact constructively in such
a fitness function. If we get a negative epistasis from a sampled solution set,
then it implies that the solution set was mis-sampled in the case. The epistasis
has a zero value if and only if the corresponding variables are conditionally
independent given Y , i.e., p(xv1 , xv2 , . . . , xvk

|y) =
∏k

i=1 p(xvi |y) for all y ∈ F .

2.3 Internal/External Epistasis

A set of disjoint nonempty subsets of a set V is said to be a partition of V if the
union of the subsets is V . A partition composed of k subsets is said to be a k-way
partition. Based on the epistasis measures shown in Section 2.2, we devise two
novel epistasis measures for a partition, internal epistasis and external epistasis.

The internal epistasis of a partition is defined to be the weighted sum of the
epistases of the subsets, where each weight corresponds to the relative signifi-
cance of a subset.
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Definition 1 (Internal Epistasis). Let π = {V1, V2, . . . , Vq} be a partition of
a variable set V ⊆ V, |V | ≥ 1. The internal epistasis ζ(π) of π is defined as
follows:

ζ(π) =
q∑

i=1

ξ(Vi)ε(Vi)
ξ(V )

, (8)

which is rewritten as

ζ(π) =
q∑

i=1

I(XVi
; Y ) −

∑

v∈Vi

I(Xv; Y )

I(XV ; Y )
(9)

when I(XV ; Y ) �= 0.

The value of internal epistasis is bounded, which is verified in the following
proposition.

Proposition 1. Let π = {V1, V2, . . . , Vq} be a partition of a variable set
V = {v1, v2, . . . , vk} ⊆ V, k ≥ 1. The internal epistasis ζ(π) of π satisfies the
following inequality:

q − k ≤ ζ(π) ≤ q. (10)

Proof. Omitted by space limitation [14]. �

The internal epistasis has a nonnegative value if the universe contains the
whole combinations of the alphabets.

Proposition 2. Let π = {V1, V2, . . . , Vq} be a partition of a variable set V ⊆
V, |V | ≥ 1. If the universe U of a problem is defined to be A1 × A2 × · · · × An,
then the internal epistasis ζ(π) of π is nonnegative, i.e.,

0 ≤ ζ(π) ≤ 1. (11)

Proof. Omitted by space limitation [14]. �

The external epistasis of a partition is defined similarly to the epistasis of
a variable set. From (2), the significance of a variable set V ⊆ V is denoted by
ξ(V ), and the significance of each subset Vi in a partition π of V is denoted by
ξ(Vi). We define the external epistasis of π to be the difference between ξ(V )
and the summation of all ξ(Vi)’s, Vi ∈ π.

Definition 2 (External Epistasis). Let π = {V1, V2, . . . , Vq} be a partition
of a variable set V ⊆ V, |V | ≥ 1. The external epistasis θ(π) of π is defined as
follows:

θ(π) =






ξ(V ) −
q∑

i=1

ξ(Vi)

ξ(V )
if I(XV ; Y ) �= 0

0 otherwise,

(12)
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which is rewritten as

θ(π) =

I(XV ; Y ) −
q∑

i=1

I(XVi ; Y )

I(XV ; Y )
(13)

when I(XV ; Y ) �= 0.

The value of external epistasis is also bounded as in the following proposition.

Proposition 3. Let π = {V1, V2, . . . , Vq} be a partition of a variable set V ⊆
V, |V | ≥ 1. The external epistasis θ(π) of π satisfies the following inequality:

1 − q ≤ θ(π) ≤ 1. (14)

Proof. Omitted by space limitation [14]. �

The external epistasis has a nonnegative value like the internal epistasis if
the universe contains the whole combinations of the alphabets.

Proposition 4. Let π = {V1, V2, . . . , Vq} be a partition of a variable set V ⊆
V, |V | ≥ 1. If the universe U of a problem is defined to be A1 × A2 × · · · × An,
then the external epistasis θ(π) of π is nonnegative, i.e.,

0 ≤ θ(π) ≤ 1. (15)

Proof. Omitted by space limitation [14]. �

The summation of the internal epistasis and external epistasis of a partition
is exactly the same as the epistasis of the variable set.

Theorem 1 (Internal/External Epistasis). The following holds for a parti-
tion π of a variable set V ⊆ V, |V | ≥ 1.

ε(V ) = θ(π) + ζ(π) (16)

Proof. Omitted by space limitation [14]. �

The theorem shows that the internal epistasis and the external epistasis of
a partition can be interpreted as the intra-partition epistasis and the inter-
partition epistasis, respectively. Figure 1 shows an illustration of the relationship
between the epistasis, the internal epistasis, and the external epistasis. Since the
epistasis is constant with a given variable set, the internal epistasis and the
external epistasis are competitive with each other, i.e., the maximality of the
internal epistasis implies the minimality of the external epistasis. This property
is utilized in Section 3.2.
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V2

V3

V1
V

(a) A partition π = {V1, V2, V3}.

V

(b) The epistasis of V .

V2

V3

V1

(c) The internal epistasis of π.

V2

V3

V1

(d) The external epistasis of π.

Fig. 1. An illustration of the internal epistasis and the external epistasis of a partition.
A partition π = {V1, V2, V3} of a variable set V is shown denoting the epistatic variable
pairs by edge connections.

3 Problem Decomposition

3.1 Decomposable Problem

The decomposability of a problem is formally defined in this section. At first,
we define a schema as follows:

Definition 3 (Schema). Let V = {v1, v2, . . . , vk} ⊆ V be an ordered set. A
pair (V, b) is said to be a schema if b ∈ Av1 × Av2 · · · Avk

.

The schema “∗10∗∗” expressed in Holland’s notation [15], for example, is repre-
sented as ({2, 3}, (1, 0)).

The conjunction of a number of schemata, whose variable sets are disjoint
with each other, is defined to be a schema composed of the union of the variable
sets and the union of the assignments.

Definition 4 (Schema Conjunction). Let π = {V1, V2, . . . , Vq} be a partition
of V ⊆ V, and (Vi, bi) be a schema for each i = 1, 2, . . . , q. A schema (V, c) is
said to be a conjunction of (Vi, bi)’s if cVi = bi for all i = 1, 2, . . . , q.
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For example, given two schemata, ({1, 2}, (1, 1)) and ({4, 5}, (0, 0)), which are
expressed as “11∗∗∗” and “∗∗∗00” in Holland’s notation, respectively, the con-
junction of the two schemata is defined to be ({1, 2, 4, 5}, (1, 1, 0, 0)), which is
expressed as “11∗00”.

A solution e ∈ U is said to be an instance of a schema (V, b) if the solution
contains the schema, i.e., eV = b. Given y ∈ F , a schema is said to be instanti-
able for y if there exists a solution which is an instance of the schema and whose
fitness is y.

Definition 5 (Instantiable Schema). A schema (V, b) is said to be instanti-
able for y if there exists a solution e ∈ U such that eV = b and f(e) = y.

An optimization is in a sense the process of finding desirable schemata. Given
a partition of the variables, we can individually optimize each subset of the
variables if we can guarantee that the conjunction of the optimal schemata
corresponding to the subsets is also optimal. In this context, we can define a
decomposable problem as follows:

Definition 6 (Schema Independence Condition). Let π = {V1, V2, . . . , Vq}
be a partition of V. The following statement is defined to be a schema indepen-
dence condition for π and y ∈ F .

“If there exists an instantiable schema for y for each Vi, i = 1, 2, . . . , q, then
the conjunction of the schemata is also instantiable for y.”

Definition 7 (Decomposable Problem). Let π = {V1, V2, . . . , Vq} be a parti-
tion of V. A problem is said to be decomposable with π if the schema independence
condition is satisfied for y = max F .

Unfortunately, we can not always assure of the optimality of the partial so-
lutions obtained from the individual optimizations of the decomposed subprob-
lems. Thus the schema independence condition only for the maximum y ∈ F
do not guarantee that the problem is possibly solved independently. This is the
reason why it is necessary to define the decomposability of a problem with more
strong conditions. Hence we define a strongly decomposable problem as follows:

Definition 8 (Strongly Decomposable Problem). Let π = {V1, V2, . . . , Vq}
be a partition of V. A problem is said to be strongly decomposable with π if the
schema independence condition is satisfied for all y ∈ F .

The decomposition of a problem in this paper has different meaning from the
concept of decomposition in additively decomposed functions (ADFs) [16]. The
strong decomposability of a problem implies that the distributions of the variable
subsets in the partition are conditionally independent given the fitness value,
while the additive decomposability in ADFs means that the fitness function of
a problem can be represented as a summation of subfunctions defined on the
variable subsets.
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3.2 Decomposition Theorem

The Conditional Independence Theorem and the Problem Decomposition The-
orem, the main results of this paper, are shown in this section.

Firstly, we show that the strong decomposability of a problem is equivalent
to the conditional independence of the variables given Y .

Theorem 2 (Conditional Independence). Let π = {V1, V2, . . . , Vq} be a
partition of V. Given a problem of which universe U is defined to be A1 ×
A2 · · · An, the problem is strongly decomposable with π if and only if XVi ’s are
conditionally independent given Y , i.e.,

p(xV |Y = y) =
q∏

i=1

p(xVi |Y = y) (17)

for all y ∈ F .

Proof. Omitted by space limitation [14]. �

Secondly, we show that the strong decomposability of a problem with a par-
tition is equivalent to the zero external epistasis of the partition.

Theorem 3 (Problem Decomposition). Let π = {V1, V2, . . . , Vq} be a par-
tition of V. Given a problem of which universe U is defined to be A1 ×A2 · · · An,
the problem is strongly decomposable with π if and only if the external epistasis
θ(π) of π is zero.

Proof. Omitted by space limitation [14]. �

We have the following corollary to Theorem 3.

Corollary 1. Let π = {V1, V2, . . . , Vq} be a partition of V. Given a problem of
which universe U is defined to be A1 × A2 · · · An, the problem is decomposable
with π if the external epistasis θ(π) of π is zero.

Proof. Omitted by space limitation [14]. �

Since the minimal external epistasis means the maximal internal epistasis
by Theorem 1, the strong decomposability of a problem is equivalent to the
maximality of the internal epistasis. Consequently, the previous theorems show
that the internal epistasis and the external epistasis are capable of quantifying
the decomposability of a problem with a given partition of variables.

4 An Example

We tested the proposed measures on a well-known problem, Royal Road function.
This example is just for more concrete explanation of the measures and the
concepts previously mentioned, not for providing a new optimization method.
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Table 1. A decomposition example for the Royal Road function. Given a Royal
Road function R, we can obtain three subproblem pairs (R11, R12), (R21, R22), and
(R31, R32) from decomposing R with partitions π1 = {{1, 2, 3, 4}, {5, 6, 7, 8}}, π2 =
{{1, 2, 3, 8}, {4, 5, 6, 7}}, and π3 = {{1, 3, 5, 7}, {2, 4, 6, 8}}, respectively.

Problem Schema si Coefficient ci

1 2 3 4 5 6 7 8
R 1 1 ∗ ∗ ∗ ∗ ∗ ∗ 2

∗ ∗ 1 1 ∗ ∗ ∗ ∗ 2
∗ ∗ ∗ ∗ 1 1 ∗ ∗ 2
∗ ∗ ∗ ∗ ∗ ∗ 1 1 2

R11 1 1 ∗ ∗ ∗ ∗ ∗ ∗ 2
∗ ∗ 1 1 ∗ ∗ ∗ ∗ 2

R12 ∗ ∗ ∗ ∗ 1 1 ∗ ∗ 2
∗ ∗ ∗ ∗ ∗ ∗ 1 1 2

R21 1 1 ∗ ∗ ∗ ∗ ∗ ∗ 2
R22 ∗ ∗ ∗ ∗ 1 1 ∗ ∗ 2
R31 – –
R32 – –

The Royal Road function is suitable for this kind of test since it has explicit
building blocks.

The Royal Road functions are special functions proposed by Forrest and
Mitchell [17] to investigate how schema processing actually takes place inside
evolutionary algorithms. To do so, the function was designed to have obvious
building blocks and an optimal solution. A Royal Road function is defined as
follows:

f(x1, x2, . . . , xn) =
∑

i

ciδi(xi, x2, . . . , xn) (18)

where ci is a predefined coefficient corresponding to a schema si, and δi :
{0, 1}n → {0, 1} is a function that returns 1 if the solution contains the schema
si, and returns 0 otherwise. Generally, the coefficient ci is defined to be equal to
the order of schema si.

Table 1 shows decomposition examples for the Royal Road function. In the
table, a Royal Road function R, which contains four order-2 building blocks,
is decomposed into (R11, R12), (R21, R22), and (R31, R32), respectively, with
three different 2-way partitions π1 = {{1, 2, 3, 4}, {5, 6, 7, 8}}, π2 = {{1, 2, 3, 8},
{4, 5, 6, 7}}, and π3 = {{1, 3, 5, 7}, {2, 4, 6, 8}}. It is notable that the subproblems
(R11, R12) have more building blocks than (R21, R22), which have more building
blocks than (R31, R32). We can solve the decomposed subproblems individually
by an exhaustive search algorithm as shown in Table 2.

Table 3 shows the external epistasis θ(·) and the internal epistasis ζ(·) of
the partitions, and the average fitness of the solutions obtained by joining the
mutually exclusive partial solutions in Table 2. We can see that θ(π1) is less than
θ(π2) and θ(π2) is less than θ(π3). By Theorem 3, it follows that the function
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Table 2. The partial solutions obtained from solving the Royal Road sub-functions
individually.

Subproblem Partial solution
1 2 3 4 5 6 7 8

R11 1 1 1 1
R12 1 1 1 1
R21 1 1 0 0

1 1 1 0
1 1 0 1
1 1 1 1

R22 0 1 1 0
1 1 1 0
0 1 1 1
1 1 1 1

Subproblem Partial solution
1 2 3 4 5 6 7 8

R31 0 0 0 0
1 0 0 0
0 1 0 0

· · ·
1 1 1 1

R32 0 0 0 0
1 0 0 0
0 1 0 0

· · ·
1 1 1 1

Table 3. The epistasis and the average quality of the conjuncted partial solutions of
the Royal Road sub-functions.

Partition π Subproblems ε(V) θ(π) ζ(π) Quality
π1 = {{1, 2, 3, 4}, {5, 6, 7, 8}} (R11, R12) 0.712 0.416 0.296 8.000
π2 = {{1, 2, 3, 8}, {4, 5, 6, 7}} (R21, R22) 0.712 0.524 0.188 4.500
π3 = {{1, 3, 5, 7}, {2, 4, 6, 8}} (R31, R32) 0.712 0.580 0.132 2.000

R is more decomposable with π1 than with π2, and more decomposable with π2
than with π3. This is consistent with the fact that π1 preserves more building
blocks than π2 which preserves more building blocks than π3. These results also
agree with the fact that the average quality corresponding to π1 is greater than
that of π2, and the average quality corresponding to π2 is greater than that of π3.
The function R is not strongly decomposable with any of the example partitions
since neither of them has external epistasis zero, although it is decomposable
with all of them by the schema independence condition for y = max F = 8.

It is notable that the tests conducted on other combinatorial optimization
problems, such as the MAXSAT problem [18], showed consistent results with
the case of the Royal Road function.

5 Conclusions

We showed that the epistasis can be factorized into the internal epistasis and
the external epistasis, and these new measures provide strong evidences for the
decomposability of a problem. The theorems and the experimental results on an
example function showed that the proposed measures were well defined and con-
sistent with other properties of the function. We believe that the contribution of
this paper is not merely providing new measures of the decomposability but also
presenting a way to in-depth understanding about the epistatic behaviors of the
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variables in combinatorial optimization problems. Future work includes applying
these measures to the design of efficient hierarchical optimization methods.
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